CC-BY 4.0

Microbial inoculant and an extract of Trichoderma longibrachiatum with xylanase activity effect on chemical composition, fermentative profile and aerobic stability of guinea grass (Pancium maximum Jacq.) silage

J. R. Gandra 1  ,  
C. S. Takiya 3,  
K. Silveira 1,  
D. Silva 1,  
Federal University of Grande Dourados, Department of Animal Sciences, Dourados - MS, 79825-070, Brazil
Federal University of Grande Dourados, Department of Biological and Environmental Science, Dourados - MS, 79825-070, Brazil
Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506-8028, USA
University of São Paulo, Departament of Animal Nutrition and Production, 13635-900 Pirassununga, São Paulo, Brazil
J. Anim. Feed Sci. 2017;26(4):339–347
Publish date: 2017-12-08
The objective of this study was to determine the effects of increasing dose of a microbial inoculant alone or in combination with a Trichoderma longibrachiatum extract with xylanase activity on total losses, chemical composition, fermentative profile, microbiological quality and aerobic stability of guinea grass (Panicum maximum Jacq. cv. Mombasa) silage. Sixty minisilos (0.022 m3) were used in a 3 × 2 factorial experiment, composed by three levels (0, 4 or 8 g · t−1 of fresh forage) of microbial inoculant (INO) and two levels (0 or 1 IU · g−1 of fresh forage) of enzyme product (ENZ). INO consisted of Lactobacillus plantarum at 4 × 1010 cfu · g−1 and Pediococcus acidilactici at 4 × 1010 cfu · g−1. Silos were opened after 60 days. The combination of INO8 with ENZ caused the lowest gas losses. ENZ increased silage crude protein content, as well as the dry matter and neutral detergent fibre (NDF) in vitro digestibility. INO doses exerted a positive quadratic effect on NDF in vitro digestibility. ENZ addition increased acetic acid concentration, while INO treatments linearly decreased acetic and butyric acid concentrations and linearly increased lactic and propionic acid concentrations in silage. INO exhibited a negative quadratic effect on pH and NH3-N concentration of guinea grass silage and positive linear increase in the counts of anaerobic bacteria. Combinations of ENZ and INO8 decreased silage aerobic stability. Although there was observed no combined effect of ENZ and INO on silage chemical composition and fermentative profile, they exerted positive influence on NDF in vitro digestibility of the guinea grass silage when added alone (ENZ and INO at a dose of 4 g · t−1).
J. R. Gandra   
Federal University of Grande Dourados, Department of Animal Sciences, Dourados - MS, 79825-070, Brazil
1. Aehle W. (Editor), 2004. Enzymes in Industry: Production and Applications. 2nd Edition. Wiley-VCH Verlag GmbH & Co. KGaA, Weiheim (Germany), https://doi.org/10.1002/3527602135.
2. AOAC International, 2000. Official Methods of Analysis of AOAC International. 17th Edition. Gaithersburg, MD (USA).
3. Briceño A.G., Martínez R., 1995. Comparison of methods for the detection and enumeration of lactic acid bacteria in yogurt (in Spanish). Arch. Latinoam. Nutr. 45, 207–212.
4. Dean D.B., Adesogan A.T., Krueger N., Littell R.C., 2005. Effect of fibrolytic enzymes on the fermentation characteristics, aerobic stability, and digestibility of bermudagrass silage. J. Dairy Sci., 994–1003, https://doi.org/10.3168/jds.S0022-0302(05)72767-3.
5. Dehghani M.R., Weisbjerg M.R., Hvelpund, T., Kristensen N.B., 2012. Effect of enzyme addition to forage at ensiling on silage chemical composition and NDF degradation characteristics. Livest. Sci. 150, 51–58, https://doi.org/10.1016/j.livsci.2012.07.031.
6. Desta S.T., Yuan X., Li J., Shao T., 2016. Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of Napier grass ensiled with additives. Bioresour. Technol. 221, 447–454, https://doi.org/10.1016/j.biortech.2016.09.068.
7. Driehuis F., Oude Elferink S.J.W.H., Van Wikselaar P.G., 2001. Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri, with or without homofermentative lactic acid bacteria. Grass Forage Sci. 56, 330–343, https://doi.org/10.1046/j.1365-2494.2001.00282.x.
8. Fitzsimons A., Duffner F., Curtin D., Brophy G., O`Kiely P., O`Connell M., 1992. Assessment of Pediococcus acidilactici as a potential silage inoculant. Appl. Environ. Microbiol. 58, 3047–3052.
9. Foldager J., 1977. Protein requirement and non-protein nitrogen for high producing cow in early lactation. PhD Thesis. Michigan State University, East Lasing, MI, (USA).
10. Holden L.A., 1999. Comparison of methods of in vitro dry matter digestibility for ten feeds. J. Dairy Sci. 82, 1791–1794, https://doi.org/10.3168/jds.S0022-0302(99)75409-3.
11. Kulasek G.A., 1972. A micromethod for determination of urea in plasma, whole blood and blood cells using urease and phenol reagent. Pol. Arch. Wet. 15, 801–810.
12. Kung Jr. L., Grieve D.B., Thomas J.W., Huber J.T., 1984. Added ammonia or microbial inocula for fermentation and nitrogenous compounds of alfalfa ensiled at various percents of dry matter. J. Dairy Sci. 67, 299–306, https://doi.org/10.3168/jds.S0022-0302(84)81302-8.
13. Kung Jr. L., Stokes M.R., Lin C.J., 2003. Silage additives. In: D.R. Buxton, R.E. Muck, J.H. Harrison (Editors). Silage science and technology. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. Madison, WI (USA), pp. 305–360.
14. McDonald I., 1981. A revised method for the estimation of protein degradability in the rumen. J. Agric. Sci. 96, 251–252, https://doi.org/10.1017/S0021859600032081.
15. McDonald P., Henderson A.R., Heron S.J.E. (Editors), 1991. The Biochemistry of Silage. 2nd Edition. Chalcombe Publications. Mallow, Bucks (UK), https://doi.org/10.1017/S0014479700023115.
16. Moon N.J., 1983. Inhibition of the growth of acid tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures. J. Appl. Bacteriol. 55, 453–460, https://doi.org/10.1111/j.1365-2672.1983.tb01685.x.
17. Muck, R., 1996. Inoculant of silage and its effects on silage quality. In: Informational Conference with Dairy and Forage Industries. Proceedings…US Dairy Forage Research, 43-52.
18. Muck R.E., 2010. Silage microbiology and its control through additives. Rev. Bras. Zootec. 39, 183–191, https://doi.org/10.1590/S1516-35982010001300021.
19. NRC, 2001. Nutrient Requirements of Dairy Cattle. 7th Revised Edition. The National Academics Press. Washington, DC (USA), https://doi.org/10.17226/9825.
20. Pang H., Tan Z., Qin G., Wang Y., Li Z., Jin Q., Cai Y., 2012. Phenotypic and phylogenetic analysis of lactic acid bacteria isolated from forage crops and grasses in the Tibetan Plateau. J. Microbiol. 50, 63–71, https://doi.org/10.1007/s12275-012-1284-5.
21. Pholsen S., Khota W., Pang H., Higgs D., Cai Y., 2016. Characterization and application of lactic acid bacteria for tropical silage preparation. Anim. Sci. J. 87, 1202–1211, https://doi.org/10.1111/asj.12534.
22. Polizeli M.L.T.M., Rizzatti A.C.S., Monti R., Terenzi H.F., Jorge J.A., Amorim D.S., 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591, https://doi.org/10.1007/s00253-005-1904-7.
23. Rabie C.J., Lübben A., Marais G.J., Jansen Van Vuuren H., 1997. Enumeration of fungi in barley. Int. J. Food Microbiol. 35, 117–127, https://doi.org/10.1016/S0168-1605(96)01210-X.
24. Rodrigues P.H.M., Gomes R.C., Meyer P.M., Borgatti L.M.O., Franco F.M.J., de Godoy G.L.A., 2012. Effects of microbial inoculants and amino acid production by-product on fermentation and chemical composition of sugarcane silages. Rev. Bras. Zootecn. 41, 1394–1400, https://doi.org/10.1590/S1516-35982012000600011.
25. Santos E.M., Pereira O.G., Garcia R., Ferreira C.L.L.F., Oliveira J.S., Silva T.C., 2014. Effect of regrowth interval and a microbial inoculant on the fermentation profile and dry matter recovery of guinea grass silages. J. Dairy Sci. 97, 4423–4432, https://doi.org/10.3168/jds.2013-7634.
26. Shao T., Ohba N., Shimojo M., Masuda Y., 2004. Effects of adding glucose, sorbic acid and pre-fermented juices on the fermentation quality of guineagrass (Panicum maximum Jacq.) silages. Asian Australas. J. Anim. Sci. 17, 808–813, https://doi.org/10.5713/ajas.2004.808.
27. Sheperd A.C., Kung L. Jr., 1996. An enzyme additive for corn silage: effects on silage composition and animal performance. J. Dairy Sci. 79, 1760–1766, https://doi.org/10.3168/jds.S0022-0302(96)76543-8.
28. Sun Q., Gao F., Yu Z., Tao Y., Zhao S., Cai Y., 2012. Fermentation quality and chemical composition of shrub silage treated with lactic acid bacteria inoculants and cellulase additives. Anim. Sci. J. 83, 305–309, https://doi.org/10.1111/j.1740-0929.2011.00962.x.
29. Sunna A., Antranikian G., 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17, 39–67, https://doi.org/10.3109/07388559709146606.
30. Tian J., Yu Y., Yu Z., Shao T., Na R., Zhao M., 2014. Effects of lactic acid bacteria inoculants and cellulase on fermentation quality and in vitro digestibility of Leymus chinensis silage. Grassland Sci. 60, 199–205, https://doi.org/10.1111/grs.12059.
31. Tilley J.M.A., Terry R.A., 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18, 104–111, https://doi.org/10.1111/j.1365-2494.1963.tb00335.x.
32. Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597,https://doi.org/10.3168/jds.S0022-0302(91)78551-2.
33. Woolford M.K., 1990. The detrimental effects of air on silage. J. Appl. Bacteriol. 68, 101–116, https://doi.org/10.1111/j.1365-2672.1990.tb02554.x.
34. Xing L., Chen L.J., Han L.J. 2009. The effect of an inoculant and enzymes on fermentation and nutritive value of sorghum straw silages. Bioresour. Technol. 100, 488–491, https://doi.org/10.1016/j.biortech.2008.06.017.