0.917
IF5
1.024
IF
Q2
JCR
0.90
CiteScore
0.385
SJR
Q2
SJR
20
MNiSW
142.18
ICV
ORIGINAL PAPER
 
CC-BY 4.0
 
 

In vitro ruminal dry matter and neutral detergent fibre digestibility of common feedstuffs as affected by the addition of essential oils and their active compounds

F. Righi 1  ,  
M. Simoni 1,  
A. Foskolos 2,  
V. Beretti 1,  
A. Sabbioni 1,  
 
1
University of Parma, Department of Veterinary Science, 43126 Parma, Italy
2
Aberystwyth University, Institute of Biological, Environmental and Rural Sciences (IBERS), SY23 3EE, Gogerddan, Aberystwyth, United Kingdom
J. Anim. Feed Sci. 2017;26(3):204–212
Publish date: 2017-09-20
KEYWORDS:
TOPICS:
ABSTRACT:
The effects of essential oils (EO) and their active compounds (EOC) on dry matter digestibility and neutral detergent fibre digestibility (DMD and NDFD, respectively) are still not enough described since in vitro methods are limited. So, the aim of the study was to screen and compare the main effects of EO and EOC on short-term DMD and NDFD using the in vitro method. The addition of phenylpropanoid-rich cinnamon oil (CIN) and clove oil (CLO), terpenoid-rich thyme oil (THY) and oregano oil (ORG), and four EOC: cinnamaldehyde (CIN-C), eugenol (EUG), thymol (THY-C) and carvacrol (CAR) was studied at a dose of 0.5 mg · l−1 of main active compound. Products were tested on four substrates: lucerne hay, soyabean meal, maize meal and a total mixed ration (TMR). Digestibility was determined at 4 and 24 h of fermentation. Both CIN and CIN-C increased NDFD4 of lucerne and maize meal, and decreased NDFD24 of soyabean meal; while CIN-C reduced NDF24 of TMR and CIN reduced DMD of soyabean at both examined hours. CLO and EUG decreased the NDFD24 of soyabean meal improving its DMD24. Also initial DMD of lucerne was increased by both these factors. Only CLO reduced NDFD24 of maize meal. Both THY and THY-C reduced DMD4 of soyabean meal; however only THY-C improved NDF4 of lucerne and reduced NDFD24 of soyabean meal and TMR. DMD24 of most substrates (except lucerne) was reduced by ORE, but not by CAR which improved NDFD4 of lucerne. The in vitro method was sensitive to variations in digestibility caused by EO and EOC, providing a promising approach for the incorporation of EO and EOC effects in systems for cattle diet formulation.
CORRESPONDING AUTHOR:
F. Righi   
University of Parma, Department of Veterinary Science, 43126 Parma, Italy
 
REFERENCES (44):
1. Benchaar C., Lettat A., Hassanat F., Yang W.Z., Forster R.J., Petit H.V., Chouinard P.Y., 2012. Eugenol for dairy cows fed low or high concentrate diets: Effects on digestion, ruminal fermentation characteristics, rumen microbial populations and milk fatty acid profile. Anim. Feed Sci. Technol. 178, 139–150, https://doi.org/10.1016/j.anifeedsci.2012.10.005.
2. Benchaar C., Petit H.V., Berthiaume R., Ouellet D.R., Chiquette J., Chouinard P.Y., 2007. Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn silage. J. Dairy Sci. 90, 886–897, https://doi.org/10.3168/jds.S0022-0302(07)71572-2.
3. Benchaar C., Petit H.V., Berthiaume R., Whyte T.D., Chouinard P.Y., 2006. Effects of addition of essential oils and monensin premix on digestion, ruminal fermentation, milk production, and milk composition in dairy cows. J. Dairy Sci. 89, 4352–4364, https://doi.org/10.3168/jds.S0022-0302(06)72482-1.
4. Bender R.W., Cook D.E., Combs D.K., 2016. Comparison of in situ versus in vitro methods of fiber digestion at 120 and 288 hours to quantify the indigestible neutral detergent fiber fraction of corn silage samples. J. Dairy Sci. 99, 5394–5400, https://doi.org/10.3168/jds.2015-10258.
5. Busquet M., Calsamiglia S., Ferret A., Kamel C., 2006. Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci. 89, 761–771, https://doi.org/10.3168/jds.S0022-0302(06)72137-3.
6. Calsamiglia S., Busquet M., Cardozo P.W., Castillejos L., Ferret A., 2007. Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 90, 2580–2595, https://doi.org/10.3168/jds.2006-644.
7. Cardozo P.W., Calsamiglia S., Ferret A., Kamel C., 2005. Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle. J. Anim. Sci. 83, 2572–2579, https://doi.org/10.2527/2005.83112572x.
8. Castillejos L., Calsamiglia S., Ferret A., 2006. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J. Dairy Sci. 89, 2649–2658, https://doi.org/10.3168/jds.S0022-0302(06)72341-4.
9. Castillejos L., Calsamiglia S., Ferret A., Losa R., 2005. Effects of a specific blend of essential oil compounds and the type of diet on rumen microbial fermentation and nutrient flow from a continuous culture system. Anim. Feed Sci. Technol. 119, 29–41, https://doi.org/10.1016/j.anifeedsci.2004.12.008.
10. Chaudhary P.P., Goel N., Baker G., Saxena J., Singh N., Chaturvedi I., Sharma A., Sirohi S.K., 2016. Influence of essential oils supplementation on rumen fermentation profile and ruminal microbial population in vitro. J. Sci. 1(4), 25–34.
11. Cobellis G., Trabalza-Marinucci M., Yu Z., 2016. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci. Total Environ. 545–546, 556–568, https://doi.org/10.1016/j.scitotenv.2015.12.103.
12. Comino L., Righi F., Coppa M., Quarantelli A., Tabacco E., Borreani G., 2015. Relationships among early lactation milk fat depression, cattle productivity and fatty acid composition on intensive dairy farms in northern Italy. Ital. J. Anim. Sci. 14, 3656, https://doi.org/10.4081/ijas.2015.3656.
13. Comino L., Tabacco E., Righi F., Revello-Chion A., Quarantelli A., Borreani G., 2014. Effects of an inoculant containing a Lactobacillus buchneri that produces ferulate-esterase on fermentation products, aerobic stability, and fibre digestibility of maize silage harvested at different stages of maturity. Anim. Feed Sci. Technol. 198, 94–106, https://doi.org/10.1016/j.anifeedsci.2014.10.001.
14. European Commission (EC), 2009. Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down methods of sampling and analysis for the official control of feed. Off. J. EU 2009, L54/1–L54/130.
15. Evans J.D., Martin S.A., 2000. Effects of thymol on ruminal microorganisms. Curr. Microbiol. 41, 336–340, https://doi.org/10.1007/s002840010145.
16. Ferme D., Banjac M., Calsamiglia S., Busquet M., Kamel C., Avguštin G., 2004. The effects of plant extracts on microbial community structure in a rumen-simulating continuous-culture system as revealed by molecular profiling. Folia Microbiol. (Praha) 49, 151–155, https://doi.org/10.1007/BF02931391.
17. Foskolos A., Siurana A., Rodriquez-Prado M., Ferret A., Bravo D., Calsamiglia S., 2015. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system. J. Dairy Sci. 98, 5482–5491, https://doi.org/10.3168/jds.2014-8674.
18. Goering K.H., Van Soest P.J., 1970. Forage Fiber Aanalyses (Apparatus, Reagents, Procedures and Some Applications). Agricultural Handbook No. 379. Agricultural Research Service – United States Department of Agriculture. Washington, DC (USA).
19. Hart K.J., Váñez-Ruiz D.R., Duval S.M., McEwan N.R., Newbold C.J., 2008. Plant extracts to manipulate rumen fermentation. Anim. Feed Sci. Technol. 147, 8–35, https://doi.org/10.1016/j.anifeedsci.2007.09.007.
20. Higgs R.J., Chase L.E., Ross D.A., Van Amburgh M.E., 2015. Updating the Cornell Net Carbohydrate and Protein System feed library and analyzing model sensitivity to feed inputs. J. Dairy Sci. 98, 6340–6360, https://doi.org/10.3168/jds.2015-9379.
21. Hundal J.S., Wadhwa M., Bakshi M.P.S., 2016. Effect of supplementing essential oils on the in vitro methane production and digestibility of wheat straw. J. Anim. Res. Nutr. 1, 14, https://doi.org/10.21767/2572-5459.100014.
22. Joch M., Cermak L., Hakl J., Hucko B., Duskova D., Marounek M., 2016. In vitro screening of essential oil active compounds for manipulation of rumen fermentation and methane mitigation. Asian-Australas. J. Anim. Sci. 29, 952–959, https://doi.org/10.5713/ajas.15.0474.
23. Khateri N., Azizi O., Jahani-Azizabadi H., 2017. Effects of a specific blend of essential oils on apparent nutrient digestion, rumen fermentation and rumen microbial populations in sheep fed a 50: 50 alfalfa hay: concentrate diet. Asian-Australas. J. Anim. Sci. 30, 370–378, https://doi.org/10.5713/ajas.15.0865.
24. Khiaosa-ard R., Zebeli Q., 2013. Meta-analysis of the effects of essential oils and their bioactive compounds on rumen fermentation characteristics and feed efficiency in ruminants. J. Anim. Sci. 91, 1819–1830, https://doi.org/10.2527/jas.2012-5691.
25. Kilic U., Boga M., Gorgulu M., Şahan Z., 2011. The effects of different compounds in some essential oils on in vitro gas production. J. Anim. Feed Sci. 20, 626–636, https://doi.org/10.22358/jafs/66221/2011.
26. Marseglia A., Caligiani A., Comino L., Righi F., Quarantelli A., Palla G., 2013. Cyclopropyl and ω-cyclohexyl fatty acids as quality markers of cow milk and cheese. Food Chem. 140, 711–716,https://doi.org/10.1016/j.foodchem.2013.01.029.
27. Mirzaei Z., Hozhabri F., Alipour D., 2016. Thymus kotschyanus essential oil components and their effects on in vitro rumen fermentation, protozoal population and acidosis parameters. Iranian J. Appl. Anim. Sci. 6, 77–85.
28. Nanon A., Suksombat W., Yang W.Z., 2014. Effects of essential oils supplementation on in vitro and in situ feed digestion in beef cattle. Anim. Feed Sci. Technol. 196, 50–59, https://doi.org/10.1016/j.anifeedsci.2014.07.006.
29. Nazzaro F., Fratianni F., De Martino L., Coppola R., De Feo V., 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6, 1451–1474, https://doi.org/10.3390/ph6121451.
30. Newbold C.J., McIntosh F.M., Williams P., Losa R., Wallace R.J., 2004. Effects of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol. 114, 105–112, https://doi.org/10.1016/j.anifeedsci.2003.12.006.
31. Özelçam H., Özüretmen S., İpçak H.H., Dereboylu A., 2017. The effect of clove essential oil treatment on the cell wall components of wheat straw. J. Agric. Sci. Technol. A 7, 68–72, https://doi.org/10.17265/2161-6256/2017.01.010.
32. Patra A.K., Yu Z., 2012. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 78, 4271–4280, https://doi.org/10.1128/AEM.00309-12.
33. Pawar M.M., Kamra D.N., Agarwal N., Chaudhary L.C., 2014. Effects of essential oils on in vitro methanogenesis and feed fermentation with buffalo rumen liquor. Agric. Res. 3, 67–74, https://doi.org/10.1007/s40003-014-0092-z.
34. Pirondini M., Colombini S., Malagutti L., Rapetti L., Galassi G., Zanchi R., Crovetto G.M., 2015. Effects of a selection of additives on in vitro ruminal methanogenesis and in situ and in vivo NDF digestibility. Anim. Sci. J. 86, 59–68, https://doi.org/10.1111/asj.12249.
35. Righi F., Romanelli S., Renzi M., Quarantelli A., 2009. “In vivo” and “in vitro” degradability of diets for Parmigiano Reggiano cheese production. Ital. J. Anim. Sci. 8, 331–333, https://doi.org/10.4081/ijas.2009.s2.331.
36. Righi F., Simoni M., Malacarne M., Summer A., Costantini E., Quarantelli A., 2016. Feeding a free choice energetic mineral-vitamin supplement to dry and transition cows: effects on health and early lactation performance. Large Anim. Rev. 22, 161–170.
37. Rofiq M.N., Gorgulu M., 2014. Combination effect of clove and orange peel oils on in vitro digestion of d total mixed ration using ANKOM DAISYII incubator. J. Adv. Agric. Technol. 1, 14–18, https://doi.org/10.12720/joaat.1.1.14-18.
38. Roy D., Tomar S.K., Kumar V., 2015. Rumen modulatory effect of thyme, clove and peppermint oils in vitro using buffalo rumen liquor. Vet. World 8, 203–207, https://doi.org/10.14202/vetworld.2015.203-207.
39. Spanghero M., Boccalon S., Gracco L., Gruber L., 2003. NDF degradability of hays measured in situ and in vitro. Anim. Feed Sci. Technol. 104, 201–208, https://doi.org/10.1016/S0377-8401(02)00327-9.
40. Tekippe J.A., Tacoma R., Hristov A.N., Lee C., Oh J., Heyler K.S., Cassidy T.W., Varga G.A., Bravo D., 2013. Effect of essential oils on ruminal fermentation and lactation performance of dairy cows. J. Dairy Sci. 96, 7892–7903, https://doi.org/10.3168/jds.2013-7128.
41. Van Amburgh M.E., Collao-Saenz E.A., Higgs R.J., Ross D.A., Recktenwald E.B., Raffrenato E., Chase L.E., Overton T.R., Mills J.K., Foskolos A., 2015. The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. J. Dairy Sci. 98, 6361–6380, https://doi.org/10.3168/jds.2015-9378.
42. Van Amburgh M.E., Van Soest P.J., Robertson J.B., Knaus W.F., 2004. Corn silage neutral detergent fiber: Refining a mathematical approach for in vitro rates of digestion. In: Proceedings of the 66th Cornell Nutrition Conference for Feed Manufacturers. Cornell University, Syracuse, NY (USA), pp. 99–108.
43. Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597, https://doi.org/10.3168/jds.S0022-0302(91)78551-2.
44. Yang W.Z., Benchaar C., Ametaj B.N., Beauchemin K.A., 2010. Dose response to eugenol supplementation in growing beef cattle: Ruminal fermentation and intestinal digestion. Anim. Feed Sci. Technol. 158, 57–64, https://doi.org/10.1016/j.anifeedsci.2010.03.019.
ISSN:1230-1388