0.906
IF5
0.875
IF
Q3
JCR
1.0
CiteScore
0.374
SJR
Q2
SJR
20
MNiSW
165.24
ICV
ORIGINAL PAPER
 
CC-BY-NC 4.0
 
 

Effects of natamycin and Lactobacillus buchneri on the fermentative process and aerobic stability of maize silage

S. Pinto 1  ,  
J.F.G. Warth 2,  
C.O. Novinski 2,  
P. Schmidt 2  
 
1
Leibniz Institute for Agricultural Engineering and Bioeconomy – ATB, Department of Engineering for Livestock Management, 14469, Potsdam, Germany
2
Federal University of Parana, Department of Animal Science, 80035050, Curitiba, Brazil
J. Anim. Feed Sci. 2020;29(1):82–89
Publication date: 2020-03-31
KEYWORDS
TOPICS
ABSTRACT
The present study was aimed to evaluate the reduction in fermentative losses and the improvement of aerobic stability of maize silage treated with Lactobacillus buchneri bacteria, antifungal natamycin and a combination of L. buchneri and natamycin. The study was completely randomized using four treatments with four replicates (silo) each. The treatments were as follows: C – control (forage without additives), NA – forage with low dose of natamycin (8 g/t) addition, LB – forage inoculated with low dose of L. buchneri (5 × 104 cfu/g) and NLB – forage treated with both natamycin (8 g/t) and L. buchneri (5 × 104 cfu/g). The losses of dry matter (DM) and gas, effluent production, chemical composition, yeast count and aerobic stability were calculated for all treatments. During fermentation, NLB produced more propionic and lactic acids and caused less DM and gas losses than other treatments (P < 0.01). The positive effect of NLB on yeast inhibition improved the aerobic stability of maize silage (P < 0.05). Thus, the combination of low doses of natamycin and heterolactic bacteria L. buchneri can reduce fermentative losses and improve the aerobic stability of maize silage after exposure to air.
CORRESPONDING AUTHOR
S. Pinto   
Leibniz Institute for Agricultural Engineering and Bioeconomy – ATB, Department of Engineering for Livestock Management, 14469, Potsdam, Germany
P. Schmidt   
Federal University of Parana, Department of Animal Science, 80035050, Curitiba, Brazil
 
REFERENCES (40):
1. AOAC International, 2012. Official Methods of Analysis of AOAC International. 19th Edition. Gaithersburg, MD (USA).
2. Ávila C.L.S., Pinto J.C., Figueiredo H.C.P., Schwan R.F., 2009. Effects of an indigenous and a commercial Lactobacillus buchneri strain on quality of sugar cane silage. Grass Forage Sci. 64, 384–394, https://doi.org/10.1111/j.1365....
3. Bernardes T.F., Daniel J.L.P., Adesogan A.T., McAllister T.A., Drouin P., Nussio L.G., Huhtanen P., Tremblay G.F., Bélanger G., Cai Y., 2018. Silage review: Unique challenges of silages made in hot and cold regions. J. Dairy Sci. 101, 4001–4019, https://doi.org/10.3168/jds.20....
4. Borreani G., Tabacco E., Schmidt R.J., Holmes B.J., Muck R.E., 2018. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 101, 3952–3979, https://doi.org/10.3168/jds.20....
5. Brik H., 1981. Natamycin. Anal. Profiles Drug Subst. 10, 513–561, https://doi.org/10.1016/S0099-....
6. Da Silva N.C., Dos Santos J.P., Ávila C.L.S., Evangelista A.R., Casagrande D.R., Bernardes T.F., 2014. Evaluation of the effects of two Lactobacillus buchneri strains and sodium benzoate on the characteristics of corn silage in a hot-climate environment. Grassl. Sci. 60, 169–177, https://doi.org/10.1111/grs.12....
7. Driehuis F., Oude Elferink S.J.W.H., Van Wikselaar P.G., 2001. Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchheri, with or without homofermentative lactic acid bacteria. Grass Forage Sci. 56, 330–343, https://doi.org/10.1046/j.1365....
8. D’Urso G., Avondo M., Licitra G., Sinatra M., 1990. Effects of adding Na-bentonite, formic acid and pimaricin on the fermentation characteristics and aerobic deterioration of triticale silage. Zootec. Nutr. Anim. 16, 99–106.
9. Erwin E.S., Marco G.J., Emery E.M., 1961. Volatile fatty acid analyses of blood and rumeen fluid by gas chromatography. J. Dairy Sci. 44, 1768–1771, https://doi.org/10.3168/jds.S0....
10. European Agency for the Evaluation of Medicinal Products, Committee for Veterinary Medicinal Products, 1998. Natamycin. EMEA/MRL/342/98-FINAL. Available at https://www.ema.europa.eu.
11. European Parliament and Council Directive No 95/2/EC of 20 February 1995 on food additives other than colours and sweeteners. Off. J. L61, 18.3.1995, 1–40.
12. Fabiszewska A.U., Zielińska K.J., Wróbel B., 2019. Trends in designing microbial silage quality by biotechnological methods using lactic acid bacteria inoculants: a minireview. World J. Microbiol. Biotechnol. 35, 76, https://doi.org/10.1007/s11274....
13. Filya I., 2003. The effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages. J. Dairy Sci. 86, 3575–3581, https://doi.org/10.3168/jds.S0....
14. Filya I., Sucu E., 2010. The effects of lactic acid bacteria on the fermentation, aerobic stability and nutritive value of maize silage. Grass Forage Sci. 65, 446–455, https://doi.org/10.1111/j.1365....
15. Jobim C.C., Nussio L.G., Reis R.A., Schmidt P., 2007. Methodological advances in evaluation of preserved forage quality (in Portuguese: Avanços metodológicos na avaliação da qualidade da forragem conservada). Rev. Bras. Zootec. 36, 101–119, https://doi.org/10.1590/S1516-....
16. Kleinschmit D.H., Kung L., 2006. A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages. J. Dairy Sci. 89, 4005–4013, https://doi.org/10.3168/jds.S0....
17. Knicky M., Spörndly R., 2011. The ensiling capability of a mixture of sodium benzoate, potassium sorbate, and sodium nitrite. J. Dairy Sci. 94, 824–831, https://doi.org/10.3168/jds.20....
18. Krooneman J., Faber F., Alderkamp A.C., Oude Elferink S.J.H.W., Driehuis F., Cleenwerck I., Swings J., Gottschal J.C., Vancanneyt M., 2002. Lactobacillus diolivorans sp nov., a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage. Int. J. Syst. Evol. Microbiol. 52, 639–646, https://doi.org/10.1099/002077....
19. Kung L., Grieve D.B., Thomas J.W., Huber J.T., 1984. Added ammonia or microbial inocula for fermentation and nitrogenous compounds of alfalfa ensiled at various percents of dry matter. J. Dairy Sci. 67, 299–306, https://doi.org/10.3168/jds.S0....
20. Kung L., Robinson J.R., Ranjit N.K., Chen J.H., Golt C.M., Pesek J.D., 2000. Microbial populations, fermentation end-products, and aerobic stability of corn silage treated with ammonia or a propionic acid-based preservative. J. Dairy Sci. 83, 1479–1486, https://doi.org/10.3168/jds.S0....
21. Kung L., Shaver R.D., Grant R.J., Schmidt R.J., 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101, 4020–4033, https://doi.org/10.3168/jds.20....
22. Lim J.M., Nestor K.E., Kung L., 2015. The effect of hybrid type and dietary proportions of corn silage on the lactation performance of high-producing dairy cows. J. Dairy Sci. 98, 1195–1203, https://doi.org/10.3168/jds.20....
23. McDonald P., Henderson N., Heron S., 1991. The Biochemistry of Silage. Chalcombe. Marlow, UK.
24. Medina Á., Jiménez M., Mateo R., Magan N., 2007. Efficacy of natamycin for control of growth and ochratoxin A production by Aspergillus carbonarius strains under different environmental conditions. J. Appl. Microbiol. 103, 2234–2239, https://doi.org/10.1111/j.1365....
25. Muck R.E., Kung L., 1997. Effects of silage additives on ensiling. In: Silage: Field to Feedbunk. NRAES-99. Ithaca, NY (USA), pp. 187–199.
26. Muck R.E., Nadeau E.M.G., McAllister T.A., Contreras-Govea F.E., Santos M.C., Kung L., 2018. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 101, 3980–4000, https://doi.org/10.3168/jds.20....
27. Pedroso A., Nussio L.G., Loures D.R.S., Paziani S., Ribeiro J.L., Mari L.J., Zopollatto M., Schmidt P., Mattos W.R.S., Horii J., 2008. Fermentation, losses, and aerobic stability of sugarcane silages treated with chemical or bacterial additives. Sci. Agric. 65, 589–594, https://doi.org/10.1590/S0103-....
28. Pryce J.D., 1969. A modification of Barker-Summerson method for determination of lactic acid. Analyst 94, 1151–1152, https://doi.org/10.1039/an9699....
29. Ranjit N.K., Taylor C.C., Kung L., 2002. Effect of Lactobacillus buchneri 40788 on the fermentation, aerobic stability and nutritive value of maize silage. Grass Forage Sci. 57, 73–81, https://doi.org/10.1046/j.1365....
30. Reich L.J., Kung L., 2010. Effects of combining Lactobacillus buchneri 40788 with various lactic acid bacteria on the fermentation and aerobic stability of corn silage. Anim. Feed Sci. Technol. 159, 105–109, https://doi.org/10.1016/j.anif....
31. Restelatto R., Novinski C.O., Pereira L.M., Silva E.P.A, Volpi D., Zopollatto M., Schmidt P., Faciola A.P., 2019. Chemical composition, fermentative losses, and microbial counts of total mixed ration silages inoculated with different Lactobacillus species. J. Anim. Sci. 97, 1634–1644, https://doi.org/10.1093/jas/sk....
32. Santos A.O., Ávila C.L.S., Pinto J.C., Carvalho B.F., Dias D.R., Schwan R.F., 2016. Fermentative profile and bacterial diversity of corn silages inoculated with new tropical lactic acid bacteria. J. Appl. Microbiol. 120, 266–279, https://doi.org/10.1111/jam.12....
33. Schmidt P., Novinski C.O., Carneiro E.W., Bayer C., 2012. Greenhouse gas emissions from fermentation of corn silage. In: K. Kuoppala, M. Rinne, A. Vanhat-alo (Editors). Proceedings of the XVI International Silage Conference. Hämeenlinna, Finland, pp. 448–449.
34. Schmidt P., Novinski C.O., Junges D., Almeida R., de Souza C.M., 2015. Concentration of mycotoxins and chemical composition of corn silage: A farm survey using infrared thermography. J. Dairy Sci. 98, 6609–6619, https://doi.org/10.3168/jds.20....
35. te Welscher Y.M., ten Napel H.H., Balagué M.M., Souza C.M., Riezman H., de Kruijff B., Breukink E., 2008. Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. J. Biol. Chem. 283, 6393–6401, https://doi.org/10.1074/jbc.M7....
36. Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597, https://doi.org/10.3168/jds.S0....
37. Var I., Erginkaya Z., Güven M., Kabak B., 2006. Effects of antifungal agent and packaging material on microflora of Kashar cheese during storage period. Food Control 17, 132–136, https://doi.org/10.1016/j.food....
38. Weiss K., Kroschewski B., Auerbach H., 2016. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage. J. Dairy Sci. 99, 8053–8069, https://doi.org/10.3168/jds.20....
39. Wiles P.G., Gray I.K., Kissling R.C., 1998. Routine analysis of proteins by Kjeldahl and Dumas methods: review and interlaboratory study using dairy products. J. AOAC Int. 81, 620–632.
40. Woolford M.K., Cook J.E., Hall D.M., Bonis A., 1980. The use of pimaricin as an additive to improve the aerobic stability of silage. J. Sci. Food Agric. 31, 558–566, https://doi.org/10.1002/jsfa.2....
ISSN:1230-1388