1.054
IF5
1.150
IF
Q3
JCR
1.7
CiteScore
0.396
SJR
Q2
SJR
40
MNiSW
165.24
ICV
ORIGINAL PAPER
 
CC-BY-NC 4.0
 
 

Effect of processed maize stover as an alternative energy source in swine production

H. W. Guo 1,  
P. Wang 1,  
J. Chang 1,  
Q. Q. Yin 1  ,  
C. Q. Liu 1,  
M. L. Li 1,  
X. W. Dang 2,  
 
1
Henan Agricultural University, College of Animal Science and Veterinary Medicine, 218 Pingan Avenue, Zhengzhou 450046, China
2
Henan Delin Biological Product Co., Ltd., 1 Taihong Avenue, Xinxiang 453000, China
3
Henan Puai Feed Co., Ltd., 123 Zhanghuatai Road, Shangshui 466000, China
J. Anim. Feed Sci. 2020;29(2):143–150
Publication date: 2020-06-30
KEYWORDS
TOPICS
ABSTRACT
In order to increase the nutritive values of maize stover, the processes of steam explosion and microbial fermentation with Aspergillus oryzae were used to produce processed maize stover (PMS). In the digestive experiment on swine it was shown that dietary digestible energy (DE) was decreased when PMS substitute rates for maize meal were increased from 5 to 15% (P < 0.05). In each of two-stage swine feeding experiment were 5 groups with 3 replications in each: group 1 – control, groups 2–4 – diets supplemented with 5, 10 or 15% PMS, respectively (as a replacement of the same amount of maize meal), group 5 – diet supplemented with 10% PMS with DE level the same as in the control group. It was indicated that average daily gain and nutrient digestibility were similar in groups with 0 and 5% PMS addition but were decreased when PMS addition increased from 5 to 15%. It can be concluded that the optimal levels of PMS in diets were below 10% for younger pigs and 15% for older ones. PMS addition could help to increase faecal enzyme activity and decrease swine diarrhoea rates. So, the insights that optimal PMS levels could relieve shortage of energy feedstuffs were provided in this study.
FUNDING
The study was supported by the National Natural Science Foundation of China (31702148), Henan Key Scientific and Technological Projects (182102110062), and Xinxiang Key Scientific and Technological Project (ZD19005).
CORRESPONDING AUTHOR
Q. Q. Yin   
Henan Agricultural University, College of Animal Science and Veterinary Medicine, 218 Pingan Avenue, Zhengzhou 450046, China
 
REFERENCES (39):
1. Aguilar D.L., Rodriguez-Jasso M., Zanuso E., de Rodriguez D.J., Amaya-Delgado L., Sanchez A., Ruiz HA., 2018. Scale-up and evaluation of hydrothermal pretreatment in isothermal and non-isothermal regimen for bioethanol production using agave bagasse. Bioresour. Technol. 263, 112–119, https://doi.org/10.1016/j.bior....
2. AOAC, 1990. Official Methods of Analysis of the Association of Official Analytical Chemists. 15th Edition. Arlington, VA (USA).
3. Berrocoso J.D., Menoyo D., Guzmán P., Saldaña B., Cámara L., Mateos G.G., 2015. Effects of fiber inclusion on growth performance and nutrient digestibility of piglets reared under optimal or poor hygienic conditions. J. Anim. Sci. 93, 3919–3931, https://doi.org/10.2527/jas.20....
4. Chang J., Zhang Q.G., Yang H.J., Yin Q.Q., Wang P., Wang Q.W., 2015. Effect of biological corn stover replacing partial corn meal on production performance, nutrient metabolic rates and carcass characteristics of broilers. Indian J. Anim. Res. 49, 474–481, https://doi.org/10.5958/0976-0....
5. Chen H., Wang W., Degroote J., Possemiers S., Chen D., De Smet S., Michiels J., 2015. Arabinoxylan in wheat is more responsible than cellulose for promoting intestinal barrier function in weaned male piglets. J. Nutr. 145, 51–58, https://doi.org/10.3945/jn.114....
6. Da Silva C.S., Van Den Borne J.J., Gerrits W.G., Kemp B., Bolhuis J.E., 2010. Effects of dietary fibers with different physicochemical properties on feeding motivation in adult female pigs. Physiol. Behav. 107, 218–230, https://doi.org/10.1016/j.phys....
7. De Leeuw J.A., Bolhuis J.E., Bosch G., Gerrits W.J.J., 2008. Effects of dietary fibre on behaviour and satiety in pigs. Proc. Nutr. Soc. 67, 334–342, https://doi.org/10.1017/S00296....
8. Du C., Nan X., Wang K., Zhao Y., Xiong B., 2019. Evaluation of the digestibility of steam-exploded wheat straw by criminal fermentation, sugar yield and microbial structure in vitro. RSC Adv. 9, 41775–41782, https://doi.org/10.1039/C9RA08....
9. Ehle F.R., Jeraci J.L., Robertson J.B., Vansoest P.J., 1982. The influence of dietary fiber on digestibility, rate of passage and gastrointestinal fermentation in pigs. Anim. Sci. 55, 1071–1706, https://doi.org/10.2527/jas198....
10. Ghose T.K., 1987. Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268, https://doi.org/10.1351/pac198....
11. Graminha E.B.N., Goncalves A.Z.L., Pirota R.D.P.B., Balsalobre M.A.A., Silva Da R., Gomes E., 2008. Enzyme production by solid-state fermentation: application to animal nutrition. Anim. Feed Sci. Technol. 144, 1–22, https://doi.org/10.1016/j.anif....
12. He B.B., Bai Y., Jiang L.L., Wang W., Li T.T., Liu P., Tao S.Y., Zhao J.C., Han D.D., Wang J.J., 2018. Effects of oat bran on nutrient digestibility, intestinal microbiota, and inflammatory responses in the hindgut of growing pigs. Int. J. Mol. Sci. 19, 2407, https://doi.org/10.3390/ijms19....
13. Jurgens M.H., 1997. Animal Feeding and Nutrition. 8th Edition. Kendall/Hunt Publishing Company. Dubuque, IA (USA).
14. Kaur A., Kuhad R.C., 2019. Valorization of rice straw for ethanol production and lignin recovery using combined acid-alkali pre-treatment. Bioenergy Res. 12, 570–582, https://doi.org/10.1007/s12155....
15. Lackeyram D., Yang C., Archbold T., Swanson K.C., Fan M.Z., 2010. Early weaning reduces small intestinal alkaline phosphatase expression in pigs. J. Nutr. 140, 461–468, https://doi.org/10.3945/jn.109....
16. Le Gall M., Warpechowski M., Jaguelin-Peyraud Y., Noblet J., 2009. Influence of dietary fibre level and pelleting on the digestibility of energy and nutrients in growing pigs and adult sows. Animal 3, 352–359, https://doi.org/10.1017/S17517....
17. Leroy C., Delbarre C., Ghillebaert F., Compere C., Combes D., 2008. Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24, 11–22, https://doi.org/10.1080/089270....
18. Longland A.C., Low A.G., Quelch D.B., Bray S.P., 1993. Adaptation to the digestion of non-starch polysaccharide in growing pigs fed on cereal or semi-purified basal diets. Br. J. Nutr. 70, 557–566, https://doi.org/10.1079/BJN199....
19. Luo Y., Chen H., Yu B., He J., Zheng P., Mao X., Yu J., Luo J., Huang Z., Chen D., 2018. Dietary pea fibre alters the microbial community and fermentation with increase in fibre degradation- associated bacterial groups in the colon of pigs. J. Anim. Physiol. Anim. Nutr. 102, e254–e261, https://doi.org/10.1111/jpn.12....
20. Miller G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428, https://doi.org/10.1021/ac6014....
21. Molist F., Van Oostrum M., Pérez J.F., Mateos G.G., Nyachoti C.M., Van Der Aar P.J., 2014. Relevance of functional properties of dietary fibre in diets for weanling pigs. Anim. Feed. Sci. Technol. 189, 1–10, https://doi.org/10.1016/j.anif....
22. Mourtzinis S., Cantrell K.B., Arriaga F.J., Balkcom K.S., Novak J.M., Frederick J.R., Karlen D.L., 2016. Carbohydrate and nutrient composition of corn stover from three southeastern USA locations. Biomass Bioenerg. 85, 153–158, https://doi.org/10.1016/j.biom....
23. Mpendulo C.T., Chimonyo M., Ndou S.P., Bakare A.G., 2018. Fiber source and inclusion level affects characteristics of excreta from growing pig. Asian-Australas. J. Anim. Sci. 31, 755–762, https://doi.org/10.5713/ajas.1....
24. Ndou S.P., Gous R.M., Chimonyo M., 2013. Prediction of scaled feed intake in weaner pigs using physicochemical properties of fibrous feeds. Br. J. Nutr. 110, 774–780, https://doi.org/10.1017/S00071....
25. Noblet J., Fortune H., Shi X.S., Dubois S., 1994. Effect of body weight on NE value of feeds for growing pigs. J. Anim. Sci. 72, 648–657, https://doi.org/10.2527/1994.7....
26. Noblet J., Le Goff G.I., 2001. Effect of dietary fibre on the energy value of feeds for pigs. Anim. Feed. Sci. Technol. 90, 35–52, https://doi.org/10.1016/S0377-....
27. Saha B.C., Iten L.B., Cotta M.A., Wu Y.V., 2005. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 40, 3693–3700, https://doi.org/10.1016/j.proc....
28. Sandhya C., Sumantha A., Szakac G., Pandey A., 2005. Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem. 40, 2689–2694, https://doi.org/10.1016/j.proc....
29. Shi M., Liu Z., Wang H., Shi C., Zhang S., 2018. Determination and prediction of the digestible and metabolizable energy contents of corn germ meal in growing pigs. Asian-Australas. J. Anim. Sci. 32, 405–412, https://doi.org/10.5713/ajas.1....
30. Siddhu M.A.H., Li W., He Y., Liu G., Chen C., 2019. Steam explosion pretreatment of rice straw to improve structural carbohydrates anaerobic digestibility for biomethanation. Environ. Sci. Pollut. Res. 26, 22189–22196, https://doi.org/10.1007/s11356....
31. Slavin J.L., Savarino V., Paredes-Diaz A., Fotopoulos G., 2009. A review of the role of soluble fiber in health with specific reference to wheat dextrin. J. Int. Med. Res. 37, 1–17, https://doi.org/10.1177/147323....
32. Solà-Oriol D., Roura E., Torrallardona D., 2009. Feed preference in pigs: Effect of cereal sources at different inclusion rates. J. Anim. Sci. 87, 562–570, https://doi.org/10.2527/jas.20....
33. Thacker P.A., Haq I., 2008. Nutrient digestibility, performance and carcass traits of growing-finishing pigs fed diets containing graded levels of dehydrated lucerne meal. J. Sci. Food Agric. 88, 2019–2025, https://doi.org/10.1002/jsfa.3....
34. Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597, https://doi.org/10.3168/jds.S0....
35. Veum T.L., Crenshaw J.D., Crenshaw T.D., Cromwell G.L., Easter R.A., Ewan R.C., Nelssen J.L., Miller E.R., Pettigrew J.E., Ellersieck M.R., 2009. The addition of ground wheat straw as a fiber source in the gestation diet of sows and the effect on sow and litter performance for three successive parities. J. Anim. Sci. 87, 1003–1012, https://doi.org/10.2527/jas.20....
36. Wang P., Liu C., Chang J., Yin Q.Q., Huang W., Liu Y., Dang X.W., Gao T.Z., Lu F.S., 2019. Effect of physicochemical pretreatments plus enzymatic hydrolysis on the composition and morphologic structure of corn straw. Renew. Energ. 138, 502–508, https://doi.org/10.1016/j.rene....
37. Wilfart A., Montagne L., Simmins H., Noblet J., Van Milgen J., 2007. Effect of fibre content in the diet on the mean retention time in different segments of the digestive tract in growing pigs. Livest. Sci. 109, 27–29, https://doi.org/10.1016/j.livs....
38. Yu C., Zhang S., Yang Q., Peng Q., Zhu J., Zeng X., 2016. Effect of high fibre diets formulated with different fibrous ingredients on performance, nutrient digestibility and faecal microbiota of weaned piglets. Arch. Anim. Nutr. 70, 263–277, https://doi.org/10.1080/174503....
39. Zhang W., Li D., Liu L., Zang J., Duan Q., Yang W., Zhang L., 2013. The effects of dietary fiber level on nutrient digestibility in growing pigs. J. Anim. Sci. Biotechnol. 4, 17, https://doi.org/10.1186/2049-1....
ISSN:1230-1388