CC-BY 4.0

Addition of coconut oil to the diet based on maize dried distilled grains with solubles (DDGS) alters miR-122a expression in the pig liver

M. Oczkowicz 1  ,  
K. Pawlina 2,  
National Research Institute of Animal Production, Department of Animal Genetics and Breeding, Krakowska 1, 32-083 Balice, Poland
National Research Institute of Animal Production, Laboratory of Genomics, Krakowska 1, 32-083 Balice, Poland
J. Anim. Feed Sci. 2017;26(4):326–332
Publish date: 2017-12-10
The aim of the study was to analyse the expression of several microRNAs (miRNA) in the liver of pigs fed different diets. Twenty-four fatteners (12 gilts and 12 barrows) originating from (Polish Landrace × White Large Polish) sows mated with (Duroc × Pietrain) boars were divided into 4 dietary groups, with 6 pigs in each group (3 gilts and 3 barrows). The fattening experiment lasted from about 60 kg to 118 kg of body weight. The animals were fed diets that differ with the presence of maize dried distilled grains with solubles (DDGS; groups II, III, IV – 20%) and the type of used fat (rapeseed oil – groups I and II, beef tallow – group III, coconut oil – group IV). A qPCR analysis to assess miR-148a-3p, miR-122a, miR-26a, miR-103, let-7a, miR-92a, miR-335 and miR-16a expressions was performed. In the GeNorm software analysis it was shown that the most stably expressed miRNAs were miR-26a, miR-16a and miR-148a-3p (M values: 0.51–0.52). Only miR-122a expression was different (P < 0.03). The miR-122a level was statistically lower in the liver of pigs from group IV (DGS+coconut oil). The results suggest that adding coconut oil to feedstuff based on maize DDGS changes the expression of miR-122a, which is an important regulator of many genes engaged in lipid metabolism.
M. Oczkowicz   
National Research Institute of Animal Production, Department of Animal Genetics and Breeding, Krakowska 1, 32-083 Balice, Poland
1. Bandiera S., Pfeffer S., Baumert T.F., Zeisel M.B., 2015. miR-122 – a key factor and therapeutic target in liver disease. J. Hepatol. 62, 448–457, https://doi.org/10.1016/j.jhep.2014.10.004.
2. Benatti R.O., Melo A.M., Borges F.O., Ignacio-Souza L.M., Simino L.A.P., Milanski M., Velloso L.A., Torsoni M.A., Torsoni A.S., 2014. Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring. Br. J. Nutr. 111, 2112–1122, https://doi.org/10.1017/S0007114514000579.
3. Chartoumpekis D.V., Zaravinos A., Ziros P.G., Iskrenova R.P., Psyrogiannis A.I., Kyriazopoulou V.E., Habeos I.G., 2012. Differential expression of microRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice. PLoS ONE 7, e34872, https://doi.org/10.1371/journal.pone.0034872.
4. Elmén J., Lindow M., Schütz S. et al., 2008. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899, https://doi.org/10.1038/nature06783.
5. Esau C., Davis S., Murray S.F. et al., 2006. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87–98, https://doi.org/10.1016/j.cmet.2006.01.005.
6. Gamazon E.R., Innocenti F., Wei R. et al., 2013. A genome-wide integrative study of microRNAs in human liver. BMC Genomics 14, 395, https://doi.org/10.1186/1471-2164-14-395.
7. Griffiths-Jones S., Grocock R.J., van Dongen S., Bateman A., Enright A.J., 2006. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144, https://doi.org/10.1093/nar/gkj112.
8. Griffiths-Jones S., Saini H.K., van Dongen S., Enright A.J., 2008. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158, https://doi.org/10.1093/nar/gkm952.
9. Jiménez-Chillarón J.C., Díaz R., Martínez D., Pentinat T., Ramón- Krauel M., Ribó S., Plösch T., 2012. The role of nutrition on epigenetic modifications and their implications on health. Biochimie 94, 2242–2263, https://doi.org/10.1016/j.biochi.2012.06.012
10. Jopling C.L., Yi M., Lancaster A.M., Lemon S.M., Sarnow P., 2005. Modulation of hepatitis C virus RNA abundance by a liverspecific microRNA. Science 309, 1577–1581, https://doi.org/10.1126/science.1113329.
11. Krützfeldt J., Rajewsky N., Braich R., Rajeev K.G., Tuschl T., Manoharan M., Stoffel M., 2005. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685–689, https://doi.org/10.1038/nature04303.
12. Lee Y., Ahn C., Han J. et al., 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419, https://doi.org/10.1038/nature01957.
13. Moore K.J., Rayner K.J., Suárez Y., Fernández-Hernando C., 2010. microRNAs and cholesterol metabolism. Trends Endocrinol. Metab. 21, 699–706, https://doi.org/10.1016/j.tem.2010.08.008.
14. Müller M., Kersten S., 2003. Nutrigenomics: goals and strategies. Nat. Rev. Genet. 4, 315–322, https://doi.org/10.1038/nrg1047.
15. Oczkowicz M., Świątkiewicz M., Ropka-Molik K., Gurgul A., Żukowski K., 2016. Effects of different sources of fat in the diet of pigs on the liver transcriptome estimated by RNA-Seq. Ann. Anim. Sci. 16, 1073–1090, https://doi.org/10.1515/aoas-2016-0033.
16. Palmer J.D., Soule B.P., Simone B.A., Zaorsky N.G., Jin L., Simone N.L., 2014. MicroRNA expression altered by diet: Can food be medicinal? Ageing Res. Rev. 17, 16–24, https://doi.org/10.1016/j.arr.2014.04.005.
17. Pawlina K., Gurgul A., Oczkowicz M., Bugno-Poniewierska M., 2015. The characteristics of the porcine (Sus scrofa) liver miRNAome with the use of next generation sequencing. J. Appl. Genet. 56, 239–252, https://doi.org/10.1007/s13353-014-0245-6.
18. Pfaffl M.W., 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.
19. Ross S.A., Davis C.D., 2011. MicroRNA, nutrition, and cancer prevention. Adv. Nutr. 2, 472–485, https://doi.org/10.3945/an.111.001206.
20. Saini S., Majid S., Dahiya R., 2010. Diet, microRNAs and prostate cancer. Pharm. Res. 27, 1014–1026, https://doi.org/10.1007/s11095-010-0086-x.
21. Sartor R.B., 2005. Probiotic therapy of intestinal inflammation and infections. Curr. Opin. Gastroenterol. 21, 44–50.
22. Świątkiewicz M., Oczkowicz M., Ropka-Molik K., Hanczakowska E., 2016. The effect of dietary fatty acids composition on adipose tissue quality and expression of genes related to lipid metabolism in porcine livers. Anim. Feed Sci. Technol. 216, 204–215, https://doi.org/10.1016/j.anifeedsci.2016.03.020.
23. Tavazoie S.F., Alarcon C., Oskarsson T., Padua D., Wang Q., Bos P.D., Gerald W.L., Massagué J., 2008. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147–152, https://doi.org/10.1038/nature06487.
24. Thomson D.W., Bracken C.P., Goodall G.J., 2011. Experimental strategies for microRNA target identification. Nucleic Acids Res. 39, 6845–6853, https://doi.org/10.1093/nar/gkr330.
25. Timoneda O., Balcells I., Córdoba S., Castelló A., Sánchez A., 2012. Determination of reference microRNAs for relative quantification in porcine tissues. PLoS ONE 7, e44413, https://doi.org/10.1371/journal.pone.0044413.
26. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F., 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034.1–research0034.11.
27. Vasudevan S., Tong Y., Steitz J.A., 2007. Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934, https://doi.org/10.1126/science.1149460.
28. Wang J., Wang X., Li J., Chen Y., Yang W., Zhang L., 2015. Effects of dietary coconut oil as a medium-chain fatty acid source on performance, carcass composition and serum lipids in male broilers. Asian Australas. J. Anim Sci. 28, 223–230, https://doi.org/10.5713/ajas.14.0328.
29. Zakaria Z.A., Rofiee M.S., Somchit M.N., Zuraini A., Sulaiman M.R., The L.K., Salleh M.Z., Long K., 2011. Hepatoprotective activity of dried- and fermented-processed virgin coconut oil. Evid.-based Complement. Altern. Med. 2011, 142739, https://doi.org/10.1155/2011/142739.